3.7.39 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [639]

3.7.39.1 Optimal result
3.7.39.2 Mathematica [A] (verified)
3.7.39.3 Rubi [A] (verified)
3.7.39.4 Maple [B] (warning: unable to verify)
3.7.39.5 Fricas [F]
3.7.39.6 Sympy [F]
3.7.39.7 Maxima [F]
3.7.39.8 Giac [F]
3.7.39.9 Mupad [F(-1)]

3.7.39.1 Optimal result

Integrand size = 25, antiderivative size = 342 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {8 b \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d}+\frac {2 (a-3 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) (a+b)^{3/2} d}+\frac {2 a \sqrt {\cos (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac {8 a b \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \]

output
2/3*a*sin(d*x+c)*cos(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)-8/3*a 
*b*sin(d*x+c)/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)+8/3*b* 
cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),( 
(-a-b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b 
))^(1/2)/a/(a-b)/(a+b)^(3/2)/d+2/3*(a-3*b)*cot(d*x+c)*EllipticF((a+b*cos(d 
*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a*(1-sec( 
d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a-b)/(a+b)^(3/2)/d
 
3.7.39.2 Mathematica [A] (verified)

Time = 4.27 (sec) , antiderivative size = 277, normalized size of antiderivative = 0.81 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (\sqrt {\cos (c+d x)} \left (a^3+3 a b^2+4 b^3 \cos (c+d x)\right ) \sin (c+d x)-\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \cos (c+d x)) \left (4 b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-\left (a^2+4 a b+3 b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+4 b (a+b \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{3 \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))^{3/2}} \]

input
Integrate[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^(5/2),x]
 
output
(2*(Sqrt[Cos[c + d*x]]*(a^3 + 3*a*b^2 + 4*b^3*Cos[c + d*x])*Sin[c + d*x] - 
 Sqrt[Cos[(c + d*x)/2]^2]*(a + b*Cos[c + d*x])*(4*b*(a + b)*EllipticE[ArcS 
in[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*Sec[(c 
+ d*x)/2]^2)/(a + b)] - (a^2 + 4*a*b + 3*b^2)*EllipticF[ArcSin[Tan[(c + d* 
x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/( 
a + b)] + 4*b*(a + b*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*T 
an[(c + d*x)/2])))/(3*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x])^(3/2))
 
3.7.39.3 Rubi [A] (verified)

Time = 1.28 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3278, 27, 3042, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {2 \int -\frac {a-3 b \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a-3 b \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a-3 b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3472

\(\displaystyle \frac {\frac {\int \frac {4 a b+\left (a^2+3 b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {4 a b+\left (a^2+3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {4 a b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-3 b) (a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(a-3 b) (a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {\frac {\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {8 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {8 a b \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 \left (a^2-b^2\right )}+\frac {2 a \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\)

input
Int[Cos[c + d*x]^(3/2)/(a + b*Cos[c + d*x])^(5/2),x]
 
output
(2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Cos[c + d*x] 
)^(3/2)) + (((8*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a 
 + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]* 
Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)]) 
/(a*d) + (2*(a - 3*b)*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sq 
rt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b 
))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - 
b)])/(a*d))/(a^2 - b^2) - (8*a*b*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + 
 d*x]]*Sqrt[a + b*Cos[c + d*x]]))/(3*(a^2 - b^2))
 

3.7.39.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
3.7.39.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2128\) vs. \(2(310)=620\).

Time = 9.31 (sec) , antiderivative size = 2129, normalized size of antiderivative = 6.23

method result size
default \(\text {Expression too large to display}\) \(2129\)

input
int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/d*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1 
))^(3/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2*((csc(d*x+c)^2*a*(1-cos(d*x+c 
))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1 
))^(1/2)*(-csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/ 
2))*a^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d 
*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^ 
2-3*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2 
*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c) 
)^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+csc 
(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2*(-cs 
c(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc 
(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+3*csc(d*x+ 
c)^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+ 
c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*(1-cos(d*x+c))^2+4*csc(d*x+c)^2*El 
lipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*(-csc(d*x+c)^2*( 
1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b* 
(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-4*csc(d*x+c)^2*Ellipti 
cE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*(-csc(d*x+c)^2*(1-cos(d 
*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-c...
 
3.7.39.5 Fricas [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")
 
output
integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(3/2)/(b^3*cos(d*x + c)^3 + 
 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)
 
3.7.39.6 Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cos(d*x+c)**(3/2)/(a+b*cos(d*x+c))**(5/2),x)
 
output
Integral(cos(c + d*x)**(3/2)/(a + b*cos(c + d*x))**(5/2), x)
 
3.7.39.7 Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(5/2), x)
 
3.7.39.8 Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^(3/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^(5/2), x)
 
3.7.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(5/2),x)
 
output
int(cos(c + d*x)^(3/2)/(a + b*cos(c + d*x))^(5/2), x)